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ABSTRACT

We prove interior regularity estimates for a large class of difference
approximations for elliptic systems of partial differential equations.
These estimates are analogous to those for the systems of differential
equations. From these regularity estimates we obtain estimates on the con-
vergence of the solutions of the difference equations. A theory of pseudo-
difference operators with order is developed and used to prove the regula-
rity results. We also comment on factors to be considered in choosing a

difference scheme for computations.
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1. Introduction
In this paper we present interior regularity estimates for finite
difference schemes for elliptic systems of partial differential equations.
We show that a large class of schemes for elliptic systems, which we call
regular schemes, satisfy interior regularity estimates analogous to those
of the corresponding differential equations. We also consider some
non-regular schemes and show that they satisfy weaker regularity estimates.

By way of example, consider the Cauchy-Riemann equations

du  9v _

ox "y 0
(1.1)

v, du _

9x + dy 0

on the unit square. One possible difference approximation to this system
is a centered difference scheme such as

Si1,3 " Yi-1,5 Vgt T ViLg-1

2h 2h

(1.2)

u

Vitl,j © "1-1,1+ Yi,9+41 T Y4,4-1

2h 2h

[y

-

(SN
]

l,z’ouo,N_l’

where h = 1/N and uij and vij approximate u(ih,jh) and v(ih,jh),
respectively. Another possible approach is to use a staggered mesh in which
the variables u and v are defined at different points such as

“141,54 " Vi34 Vith, i+ T Vi, j
h h

(1.3)
Vitd,j " Vi, o, Miavk " M54
h h




-2

where ui,j+% approximates u(ih, (j+3)h) and Vi+%,j approximates
v((i+3)h,jh).

In section 5 we show that the solutions of the staggered scheme (1.3),
which is a regular scheme, satisfy regularity estimates analogous to those
of the Cauchy-Riemann equations themselves, while the solutions of the
centered scheme (1.2), a non-regular scheme, satisfy weaker estimates. The
regularity estimates for the staggered scheme (1.3) are a consequence of
Theorem 2.1, the interior regularity estimate for general regular schemes.

The failure of the solutions of the scheme (1.2) to satisfy regularity
estimates analogous to those satisfied by solutions of the differential
equations (1.1) is a direct consequence of the non-regularity of the scheme
(1.2).

The outline of the paper is as follows. The main definitions and the
statement of the main theorem are presented in section 2. The principal
result of this paper is the interior regularity estimate, Theorem 2.1,
which, for a regular elliptic system of difference equations Lu = £,
expresses the smoothness of the solution u in the interior of the domain
2 in terms of the smoothness of the data f in . As an application we
present Theorem 2.2 which states that if the solutions up of a regular elliptic
system of difference equations converge as h tends to zero to the solution
u of an elliptic system of differential equations, and if the difference
equations are a sufficiently accurate approximation to the differential
equations, then the difference quotients of y, - u converge to zero at the
same rate that Y, - u converges to zero. Section 3 is devoted to developing
the theory of pseudo-difference operators which is used in the proofs of the
regularity theorems. The interior regularity theorems are proved in section 4.

In section 5 several examples of regular and non-regular difference schemes




are presented. We also present some practical considerations which one
might use in deciding on a numerical scheme for a particular problem.

We have been careful to separate the statements of the results from
the methods used in the proofs. Therefore, the reader who is interested
only in the results of this paper need not read sections 3 or 4 but
rather can concentrate on section 5 where the method is applied to
several examples with references to the main theorems of sections 2, 3,
énd 4.

Both regular and non-regular schemes have been used for computations
with elliptic systems. For the Cauchy-Riemann equations a regular
staggered scheme has been used by Ghil and Balgovind [1979] and Lomax
and Martin [1974]. Frequently elliptic systems arise as part of a larger,
more complex problem. The numerical solution of the Stokes equations or a
similar elliptic system is often a part of an algorithm for the integration
of the time-dependent dincompressible Navier-Stokes equations. In this
context staggered meshes have been used by Harlow and Welch [1964], Patankar
and Spalding [1972], and others, while a centered scheme has been used by
Chorin [1967, 1968]. For such computations the overall accuracy of the
solution depends on many factors, such as boundary conditions, treatment
of nonlinearities, etc., and thus the use of a non-regular scheme need not

entail a less accurate solution. This topic is also discussed in sectiomn 5.

The theory of pseudo-difference operators developed in section 3 parallels

the theory of pseudo-differential operators that has proven so useful for

the study of partial differentidal equations. We refer the reader to
Nirenberg [1970} and Taylor [1974] for introductions to the theory and appli-
cations of pseudo-differential operators. Pseudo-difference and pseudo-

translation operators have been studied previously by Vaillancourt [1969],




Lax and Nirenberg [1966], and Yamaguti and Nogi [1967]. The theory pre-
sented here differs from these other theories in that it emphasizes the
order of a pseudo-difference operator. Considering pseudo-difference
operators with order allows one to obtain the regularity estimates in a
way that 1is analogous to that used in the theory of pseudo-differential
operators.

The interior regularity estimates given in sections 2 and 4 are
analogous to Sobolev interior regularity estimates for elliptic systems
of partial differential equations; see Agmon et al. [1964, p. 77].
Interior regularity estimates for difference approximations to a single
elliptic equation have been given by Thomée and Westergren [1968]. Similar
results have been given by Vainikko and Tamme [1976].

Brandt and Dinar [1979] have discussed regularity for systems of
elliptic difference schemes. Our definition of a regular difference
scheme corresponds to their definition of T-ellipticity. They note that
schemes which lack regularity (i.e. are not T-elliptic) can cause numerical
solution procedures, such as the multi-level adaptive technique, to be
unstable unless great care is taken.

Using the interior regularity estimate we show how to obtain estimates
on the convergence of higher order differences of the solutions to the
difference equations to the corresponding derivatives of the solution of
the differential equation. These results have been obtained by Thomée
and Westergren [1968] and Vainikko and Tamme [1976] for a single elliptic
equation. Bramble and Hubbard [1964] proved similar convergence results
for a single elliptic equation by using the discrete Green's function.

For the finite element method, Fix et al. [1977] emphasize the

importance of regularity estimates in obtailning optimal rates of convergence
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as the mesh is refined. The Grid Decomposition Property of Fix et al.
[1977] is the requirement that a regularity estimate holds for the discrete
first-order Poisson equation with a particular form of the data. It appears
to be nontrivial to show whether or not a given finite element space satis-
fies the Grid Decomposition Property. In contrast, to check the regularity
of a finite difference scheme involves only algebraic manipulation. The
regularity estimate for the difference equations then follows from the
regularity of the scheme. For the finite element method applied to a single
elliptic equation, interior convergence estimates have been obtained by
Bramble and Thomée [1974].

In a forthcoming paper, we will prove regularity estimates up to the
boundary in domains with boundary-fitted coordinate systems. We will use
these regularity estimates to derive estimates on the rate of convergence
of the solutions of the difference approximations to the solution of the

system of differential equationms.

2. Preliminaries and Statement of the Main Theorem
We define elliptic systems of partial differential equations as was

done by Douglis and Nirenberg [1955].

Definition 2.1 For 1i,j = 1,**+,n, let lij(x,D) be a linear differential

operator expressed asa polynomialin D = (-i %;— st ,-1 %;—) with variable
1 d

coefficients depending on x eIRd. The system of partial differential

equations
n
(2.1) j);l Byy(x.D)uy = £ (x) 1=1,%++,n

is elliptic if there are sets of integers {Gi}2=1 and {Tj}?=1 such that

the polynomials 21j(x,£) as polynomials in £ ¢ IRd satisfy




dEg ’Q'ij (X,E) i Gi + Tj 1,J=1)'..9n

and

det Zij(x,i) + 0 for &£ # 0

where Rij(x,g) is that part of Qij(X,E) that is of degree oy + Tj in
£. A polynomial of negative degree is identically zero by definition.
Note that det Qij(x,g) is a polynomial in & which is homogeneous
n

of degree 2p = igl (Gi+Ti). The determinant condition in the definition

is equivalent to

(2.2) det 2,60 > clel?P for |E| 1large

d
where |€|2 =1 Ei. Without loss of generality, we may assume that
i=1

= i >
max O, 0 and min Tj > 0.
Several examples of elliptic systems with appropriate values for the

0,'s and T.'s are:
i h|

1) The inhomogeneous Cauchy-Riemann equations

du  9v _
ax ~ ay - f10y)
(2.3)
v, du _
ox Ty - L2007)
0p =0, =0 g =T =1




2) The first-order Poisson equations

_9p _
u 3x fl(x,y)
(2.4) v-2f x,y)
. ay 2 ’y
du ov
9x + dy f3(x,y)
ol = 02 = =1, 03 = 0, T, < T, = 1, Ty = 2.

3) The Stokes equations

2 3P _
Vou + % fl(x,y)
V2V + %R = f2(x,y)
(2.5)
Jdu av
ax T oy = £300Y)
o, = 02 =0, 03 = -1, Ty =T, = 2, 13 =1

Before defining regular elliptic systems of difference equations, we

. d
must introduce some notation. For h >0 and | € Z , the translation

H

h is defined by

operator T

(Tgu) (x) = u(x+hy) for x € Rd

e, e
The forward and backward difference operators 6+J and S_j are given by

e, e

h I P B
<S+ —h(Th 1)
e

53 . ;(I_T‘ej)
h h



where {ej};(ji=1 is the usual basis for ]Rd. For u,v € Zd , we write
p<v if “j ﬁ\)j for j=1l,**+,d. If a € zd and o > 0, we say that

o 1is a multi-index and we define

If o is a multi-index, define

A translation operator is an operator A of the form

_ H
(2.6) Au = Z au(h,x)Thu ,
HeM
where M 1s a finite subset of Z(i and each au is a smooth function
of x € Iﬁi for each h > 0. For convenience, we will always assume 0 € M
even if ao(h,x) = 0. We assume here and subsequently that h < hmax for

some fixed h .
max
The symbol of the translation operator A given by equation (2.6) 1s the

function

2.7 ath,x,2) = Y a (h,xe™",
pem F

The symbol a(h,x,Z) will usually be evaluated at 7 = h§ for £ € Zd .

a(h,x,z) is 27m-periodic in each Cj' Also

A(eix.g) = a(h,x,hE)eix.E.




We only allow translates which are integer multiples of the mesh
width h. This is to keep track of the smallest effective distance
between grid points. This does not eliminate staggered grids: we view
fractional translates as a change of the dependent variables instead of
part of the translation operator. For example, if u and v are defined
on the grids (ih, (j+#%)h) and ((i+2%)h,jh) in IRZ, as in the example
in section 1, then the closest points in the union of the two grids are
distance h//2 apart; but u and v are both defined on uniform grids
of mesh width h. The regularity properties of u and v should be
examined on grids of mesh width h, not h/2 or h//2. As in computer

programming where integer subscripts must be used, we can define new

variables

14

u,, = u V.. =V .
ij 1,34 ° ij i+,5 2
and write the translation operator in terms of u and V.
The translation operator (2.6) is called a difference operator of
order m, where m 1is a non-negative integer, if it can be written as a

sum of terms of the form

t .a . v-
(2.8) ap () BE 6T,
where Vv, = min pu. and each such term satisfies:
u€EM
(1) t>0, o>0

(i1) la| -t <m
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(4ii) a, o is a smooth function of x € Hfi for each h > 0
’

(iv) a, a and sufficiently many of its x derivatives are bounded,
bl

independent of x and h.

For example, the centered difference operator in nzl is a
difference operator of order 1,
1.1 =1, _ 1  h ;2. -1
2h(T T ™) (6+ + 5 6+)T .
If a(x) 1is smooth, Au = 6+6_(a(x)u) is a difference operator of

order 2,
A= ((6+6_a(x)) I+ 2(8,a00)5, + (Tla(x))ai)fl.

To write a translation operator (2.6) as a sum of terms of the form (2.8),

e, e,
factor out Tﬁ- from the right of A, use ThJ =1+ h6+J to replace all

remaining occurences of T by I and 5+, and group terms by powers of

$
+

Not every translation operator is a difference operator, e.g.

e
h-lThl, but all standard difference schemes are in the class of difference

operators. We use this definition of difference scheme because it has a
well-defined concept of order and yet is very general. Also it will enable
us to show easily that difference operators are pseudo-difference operators
of the same order as defined in section 3.

We need a symbol which plays the same role for difference operators

2 ,
that |€| plays for differential operators. For E'IRd, let




TR P B
2 i -1
]\j(h,C)=B—]sin—21)——eh j o= 1,¢%,d
2 d 2
(2.9) Ap(h,0)™ = 35 Ay (h,D)
j=1
2 2
Ah,g)" = 1 + Ao(h,c)

A(h,7z) 1is even and 2m-periodic in each Qj. Note that AJ.(h,C)2 is the
e.

e.
symbol of —6+QG_J.

Definition 2.2 For 41i,j = 1,***,n, let Lij be a difference operator
with symbol Zij(h,x,c). The system of difference equations

o

(2.10) uj(x) = fi(x) i=l,°°*,n

L,.
=1 -

is a regular elliptic system if there are sets of integers {01}2=1 and
{Tj}§=l such that each Lij is a difference operator of order at most

Oi + Tj, and if there are positive constants C, EO, h0 such that

2.11) det 2, (%0 2 ¢ Mh,z)%P
n
< = i

for h€0.§ !Clm.i.“ and 0 <h <h, where 2p i§1(0i4-ri). A difference
operator of negative order is identically zero by definition. We will say
the system (2.10) is regular elliptic of order (o,T1).

Note that the scheme (1.3) is regular elliptic while the scheme (1.2)
is not; see section 5. Without loss of generality, we may assume that

max 0, = 0 and min Tj > 0.
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This definition is equivalent to the definition of T-ellipticity
given by Brandt and Dinar [1979]. The definition of an elliptic
difference equation given by Thomée and Westergren [1968] requires the
scheme to be a consistent approximation of an elliptic differential
equation and have no lower order terms; if this is so, their definition
is equivalent to Definition 2.2.

We now consider grids in a bounded domain I C ]Kd. For each h > 0
let G(h,2) be a grid in {l. We assume that at each point X € 9] there
is a neighborhood N(xo) and a smooth map independent of h mapping

N(x into IRd such that the image of N(xo)fﬁ G(h,{) 1is a uniform

o’
rectangular grid of mesh width h parallel to the coordinate axes. For
simplicity, we will treat G(h,2) as if it were a uniform rectangular

grid on  itself.

We define difference norms in subdomains Ql of . Unlike derivatives,
the value of §3u at a point x does not depend only on values of u in
arbitrarily small neighborhoods of x. For any x eiRd and multi-index
o, define the d-dimensional rectangle
(2.12) R(h,x,a) = {y € rY: x, < y. <x, +ho,, j=1,°°°,d}.

J—"1— 1 J
For a given h and x, diu(x) depends on values of u in the rectangle
R(h, x,0). We will include in the difference norm of u over § any

1

difference whose value depends on values of u in Ql. Thus we define

G(h,2y,a) = {x €6(h,Q): R(h,x, )N Q; F ¢ and R(h,x,0)C Q} .
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For any integer s > 0 and subdomain QlC: {2, define the difference norm

(2.13)

PIRRC 2 Il

2
flull =
B8 o<lal<s x €G(h,12;,0)

These norms are a discrete version of the integral norms
2 2

(2.14) I ull = f]D ul .
S’Ql 0<|a]<s

If T 1is a multi-index, define

2 = 2
(2.15) lfu || = I u .
h,S+’t,Ql jé:l h| h,Ql,Sﬁj

We say that a translation operator A given by equation (2.6) is
defined in  {if, for each h > 0, each au(h,x) is defined and is smooth
for x in

(2.16) Q 4 = (x € Rh,x+hv v -v) e Q} ,

+ - .
where VvV ,v ¢ Zd are given by

+ -
V., = max U, \3 = min u. .
pey J uenM
- +
i <Q< i < h!
Since we assume 0 € M, v <0<v , so Qh',MC Qh,M if h <h'. Also
U o . We say that a translation operator defined in & is a

h>0 h, M

difference operator defined in  if it satisfies the conditions for a

difference operator for x € Qh M Note that for any a which occurs in
b
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any term of the form (2.8) when A {s expressed as a sum of such terms,
a < vl - V7, so R(h, x+hv ,a) € R(h,x+hv v -v7). So G(h,D) th,M
is the most natural subset of the grid G(h,R) in which Au(x) is defined
for a given grid function u on G(h,Q), whether we write A in transla-
tion form (2.6) or in difference form as a sum of terms of the form (2.8).
If, for a fixed h, u and f are functions on G(h,R), then Au = f
on G(h,R) means Au(x) = f(x) for =x € G(h,R) F‘Qh,M'

We now state the interior regularity estimate for regular elliptic

systems of difference equations.

Theorem 2.1 If system (2.10) is a regular elliptic system of difference
equations of order (0,T) defined in £ and u is any solution of the
system on the grid G(h,?), then for any integer k > 0O and subdomain Ql

with compact closure ‘ﬁl c Q,

(2.17) + lull

I u”h,k+’f,Ql ety e, g h,0,0

The constant € depends on k, Ql’ and §, but is independent of u and

The proof of this theorem is in section 4.
Theorem 2.1 is analogous to the interior regularity theorem for
elliptic systems of partial differential equations given by Agmon, et al.

[1964, p. 77], which we restate here for completeness.

Theorem 2.1' If wu(x) 1is any solution of the elliptic system of partial

differential equations (2.1) in a domain Q € Kﬁi, then for any integer

k > 0 and subdomain Ql with compact closure {Q.C Q,

1

Ioharg < el el g g+lull g0
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The constant C depends on Kk, Ql’ and {, but is independent of u.

One consequence of the interior regularity estimate (2.17) is a
convergence theorem proved by Thomée and Westergren [1968) for single
elliptic equations. Their result extends to regular elliptic systems

of difference equations.

Theorem 2.2 Let Lh be a regular elliptic difference operator of
order (o,t) defined in §, let up and fh be functions on the grid
G(h,2) with Lhuh = fh’ and let u be a function of x in .

Suppose that

_ T
(2.18) [ ”h,O,Q = 0(h")
and
(2.19) £ -Loull, oo =0@%
i1 i1 ll’l\ \J,uu

for some positive integer k as h-=0; then

t
(2.20) = 0(h")

I ol e,

as h + 0 where Ql is any subdomain with compact closure .ﬁl-i 2 and

t = min(r,s).

Proof Equation (2.20) is a direct consequence of estimate (2.17) applied

to u, - u followed by the application of the estimates (2.18) and (2.19).

Equation (2.19) can be obtained if L f approximates with order

h'h © “h
of accuracy s an elliptic system of difference equations Lu = f of which

. . . . o]
u 1is a solution. If u 1is smooth, then its difference quotients 6+u

. . a .
converge to its derivatives 9 u, so results can be obtained on the rate
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of convergence of the difference quotients of u, to the derivatives of u.
Similarly, if Qh is a difference operator approximating a differential
operator Q with order of accuracy q then Qhuh converges to Qu at a
rate depending on t and q. Supremum-norm convergence results can be
obtained from 22 convergence results using discrete Sobolev inequalities.

The reader is referred to Thomée and Westergren [1968] for details.

3. Pseudo-Difference Operators with Order

We develop here the theory of pseudo-difference operators with order.

It suffices to use the torus Td = Kfi/(ZWZZ)d, i.e., [O,ZTr]d with opposite

faces identified, as our basic domain. Let N > 0 be an integer, and

2T

= N+l - For v = (v

h

eV where the vj's are integers, let x_ = hv.

1 d) V

Define the grid
< 2N for j=1,ee+,d} .

We consider Cn—valued functions u(x) defined for x € G. Define an

inner product on this set of functions by

(u,V)G =‘Hd u(x)*V(X) s

X€EG

where ===

The discrete Fourier transform of u is

ace) = 4 %8 L(x) = (eix.g,u)G c ezdy .
xX€G

4(E) is (2N+1)-periodic in each gj. Let
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F={gezd: lgj[iN for j=1,*-+,d} .

The set of functions elx.gej for £ €' and j=1,*°*,n (where
{ej} is the standard basis of t™) form an orthonormal basis of

Q2(G)n with the inner product (°,')G. The Fourier inversion formula

is

MO MR (R (x € ©)
EeT

and Parseval's formula is

*
WLV, = 3 EEHE)
¢ E€r
The translation operators Tﬁ and forward difference operators e

(dropping the +) defined in section 2 satisfy

Th(E) = IHE (e

ihE o ihg o
§%u(E) = T%T(e l”l) he (e ‘- 1) ()
h

The norms we use are discrete Sobolev norms. The quantity A(h,hE)z,

where A(h,z) is defined by equations (2.9), corresponds to the 1 + ]g[z

factor in the definition of continuous Sobolev norms. Therefore, if we

set Aj(g) = Aj(h,hE) and A(&) = A(h,hf), then for s € R the discrete
Sobolev norm is defined by

Il = T 2@ la@]? .
S Ee P
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Note that |l u ”0 is the RZ(G)n norm of u:
||U|% = (u,u); .
Since f% (eith - 1)| = Aj(E), Parseval's formula gives

Qo e 1 A
| 6%l - gZF h® T 4?2 e 2.
€

If s 1is a non-negative integer, then llu”S is an equivalent norm to

1 2 %
sl , = X 2 F 1wwPf = fen® 31l
h

8, T 0< || <s X €6 lal<s

and the constants of the equivalence are independent of h. Notice that h and
Td do not appear explicitly in the notation for the discrete Sobolev norms.
We trust no confusion will arise.

We will need the following analog of Peetre's inequality.

Lemma 3.1 If se€R and £, 7N e:m@ , then X(E-n)zs < 2|S| X(&%lsl K(ﬂ)zs .

Proof If s =1, this follows from the inequality

sin2(91 -0, < 2(sin’ 8, + sin’ 8,)

and the s>0 case follows by taking powers.
If <0, replace n by £-n in the s= 1 case and raise both

sides to the Isl power.

In what follows, the dependence of G, [, A(§), N, etc. on h is understood.
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Definition 3.1 Let m€ R. If p(h,x,0) 1is an nXxn matrix function of
d
h, x € G, and [ € R , 2nm-periodic in each Cj’ we say that p(h,x,z)€ S? K
s

if there is a constant C such that

188 8% pr,x0)| < w8l A, el

for all h, %, and for |a| < J, IBI.i K. We will write p(h,x,Z) € s™

because we will always assume that J and K are large enough to make the

. . . B (3 \1 5 \Pa
following theory valid. We have used the notation 3 = { coof—o .

o\ 3T,

and Si operates on p(h,x,L) as a. function of x. p(h,x,5) is called

a symbol of order m. If p(h,x,Z) € S? for all m € R, we will write

»K
-0

P(h,X9C) € SJ’K'

Definition 3.2 1f p(h, x, ) € s®  define the operator P on 22(6)n

(3.1) Pw) (x) = Z %8 Leh, x, mE) GCE) -
E'eT

by

P is called a pseudo-difference operator of order m and we write P € ps®.

The symbol of P, p(h, %X, L), 1is sometimes denoted by Op-
Another useful representation of the operator P gives the Fourier
transform of Pu in terms of the Fourier transform of u and the Fourier

transform in x of the symbol of P which is

SCh, My T) = A° ; e N oh, x, 7).
X

~

[t
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This representation is:

A = o 3 T B w0 800
X g €

= 2 Gd Y SO0 o, ha)) a(g)

or

G.2)  Pu ()

|
>
~
=2
=3
]
Y
=
Raa
-~
[=34
~
oYy
~

Q

m

Avrl 1 7Y - m R
Clearly, if p(h, x, ) € SJ,K’ then € J—!a],K

p(h, x, L) € S

]

_Igl

k-|g| - Since hA(h,Z) 1is bounded,

18] B m
and h BC p(h, x, T) € SJ

m

2
J,K°

m—t
J,K

1

K and r(h,x,Z) € S

m
h® p(h, x, 2) €S if ©0. If q(h, x, L) € S,

m1+m2
then Q(h, X, C) I'(h, X, C) € S
J,K

Every difference operator of order m defined on the torus Td is a

pseudo-difference operator of order m. This is because the symbol of
e, ig,

u iu-t¢ A 0 1 1 J_ . . 1
Th’ e , 1is in SJ,K and the symbol of § 7, h(e 1), is in SJ,K
VIRTEN |o] .
for all J,K. So the symbol of ¢ Th is in SJ K for all J,K. Since
o]
s a(x)| < max IDaa(Y)!

vy € R(h,x,q)
for any smooth function (where R(h,x,0) is the d-dimensional rectangle
given by (2.12)), the remarks above imply that the symbols of operators of
the form (2.8) which satisfy the conditions listed after (2.8) are in
m

s .

It is also easy to check that for each m € R, A(h,g)m € S? K for all
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J,K. Induction on IBI shows that 32 A(h,g)m is a linear combination

of terms of the form

d z b, . \c
h 2 Ath,p)™ 2 j|=1| (sin —g— ) J <cos —g_—) 3

where a, bj’ cj are non-negative integers satisfying

- _ C.
The desired result follows immediately since hA(h,Z) and h 1 A(h,Z) 1|sin Tfﬂ

are both bounded. We write A" for the operator with symbol A(h,t;)m .
The order of a pseudo-difference operator determines the degree of
smoothness (measured in terms of the discrete Sobolev norms) which is lost

or gained when P 1is applied to a grid function wu.

Theorem 3.1 If p(h,x,2) € Sm, then there is a constant C independent

of h and u such that

IPullgy 2 cllullg-

We first need a lemma.

m

Lemma 3.2 If p(h,x,Z) € SJ+r,K

with r > d, then

|
(3.3) sup Y ! sw Bg 5(h,n,2) blfl A(h»C)-mJ'm' = ¢
|8 <k n'eT ¢
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where C 1is independent of h. Conversely, if p(h, x, ¢) 1is a function of

h, x € G, and [ eﬁmé, 2n-periodic in each Cj’ for which (3.3) holds,

m

then p(h,x,Z) € SJ,K'

If p(h,x,;) satisfies (3.3), we say p(h,x,;) € §? g °

Proof For |a|] < J+ 71, |B] <K,

d 4B

(Xl o
Ay ® e agm) € oy

A a B
Bh,n, o) = [8, 8D (h,n,0)]

f

= suwp ,52 ag p(h,x,0)| < ¢ n Bl A, I8l
X €6

Summing over Ia| < J+r with appropriate weights,

A FT lag 5 (o bl Bl am,n ™8l < .

The result follows since

2 T o X, DT < e

ner nez
Conversely, 1f (3.3) holds, then

|35 6% p(hx,0)| njé:r A 1@ 35 5 kim0

so if Ja| < J, |Bl < K, then
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8 6% penx,n) 1l a, o™l <o

2(s-m)

~ 7\
Proof of Theorem 3.1 Let v(n) = A(M) Pu(n). Then

y o tm® fum
nerl

I ea

> wm® ph,nE, hE) w(E)
n,L €Tl

= Y e pun,hE) 8
n,Eerl

by the (2N+1)-periodicity of ;(n) and E(h,n,h&) in each nj.

Applying the Schwarz inequality and Lemmas 3.1 and 3.2,

N

( n -m o s-m| . seml| A
Y bwlsmnmore | aemoe |u<£>|)(x<n+a> IPu(n+€)!)

2
Hew 12
n,£ €T g

-m 2m 2(s-m) 2 %
< Y suwlp nponE l[}: AE) A(HE) IacalJ Ieall,
nel & gerl -m
|s-m]/2 |s-m| -m
< 2 X am swlswanmone |-l - | el
ne'l £ S=m

IA

cllull, = leull__ .

Divide by ” Pu”s_m to obtain the theorem.
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The product of two pseudo-difference operators is again a pseudo-
difference operator whose symbol is, to highest order, the product of the

symbols of the two operators.

m m
Theorem 3.2 If q(h,x,Z) € S 1, r(h,x,z) € S 2, and P=QR, then P is

m,+m
a pseudo-difference operator with symbol p(h,x,Z) € S 12 given by

(3.4) p(h,n,g) = 3 §(h, n-6,z+ h6) £ (h,0,7),
6eT
Moreover, if p;(h,x,2) = p(h,x,2) - q(h,x,2) r(h,x,7),
m1+m2—l

then pl(h,x,C) €S

[

Proof Pu (n) §(h,n-6,h8) £ (0)

= 2 4, n-6,1h8) f£(h, 6-E, hE) G(E)

by the (2N+1) - periodicity of 4q(h,n,Z) and %(h,n,Z) in each nj and
the 27m-periodicity of 4q(h,n,z) 1in each Cj' So

B3 = T $, n-, hE) 6
EeTl
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where $(h,n,z) 1is given by (3.4). Define

8 18] -+ |

(3.5)  p" (h,n) = sup sup |3 B(h.N0) b AhT)

K I8l <k ¢

2 Bl -mp-mptel
For |B| <K, 3C p(h,n,2) h A(h,T) can be written
as a sum of terms of the form
Y byl o+l Y]y /By |8-v] ~m+| 8-y |
CBC q(h,n-6,z+h8)h Ach,z) 3C r(h,0,2) h A(h,z)

6el

for Y<B, each of which is bounded by

oomy m,
6el
t
by Lemma 3.1, where u = sup l—ml + 'Y"- So
ly] <K
J m,+m
172 J H m m
X Am op (b,n) < C 3 A A Loy oy £ 2(n.8
ne'r g N6 T (m A(®) qp (h,n-8) r;"(h,6)
J u m1 m2
< ¢ X A(+8)  A(8) q (h,n) " (h,0)
n,6 €T
2: J L 2: J+u m,
< C A(n) q, (h,n) A(6) r,” (h,0)
2 2t K 0%’ 1 K
m m

which is bounded by Lemma 3.2 since q € S 1 and r € S .

ml+m2
So by Lenma 3.2, p ¢ S .
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Let po(h,xg) = q(h,x,g) r(h,x,z). Then for x € G,

ix* (n+6) . .
po(h,x,c) = ) e (+0) q(h,n,z) t(h,6,2)
n,6 €T
_ ix*n - ~
- 2: e Q(h,n‘e,C) r(h’G,C)
ns6€ T

by the (2N+1)-periodicity of q(h,n,z) in each nj. So

(3.6) Bp(ynye) = 3 qh,n-8,8) £(h,6,0)
6e T
ﬁl(h’n’C) = ﬁ(h9ns§) - ﬁo(h,ﬂ,ﬁ)
- Y (§n,n-8,c40) - §(h,n-6,0)) £(0,0,0) -
beT
B |B| —ml—m2+l+|8|
For |B| <K, 3C ﬁl(h,ﬂ,C) h A(h,T) can be written as a

sum of terms of the form

Y Iy -m +1+| Y|\ [ B-Y = -m,+|B-Y]
= (3c(v(?;+h9) - vl AGD T )(a comeon ame 2
€

for any Yy < B where v(z) = q(h,n-0,2). For fixed n,0 € ', and T,

1 Y |Y| —ml+1+lyl
(vctne) - v@) B A,

%
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Ul Zd: Yhe, |yl+1A —m1+1+lyle
= o =% BC v(z+th6) h (h,z) P dt

my 1 u
< ¢ ay tnee) Jo] S ar
by Lemma 3.1, where u = sup l—ml+1+lyll. But for 6 €T,

ly] <x

6] < T A(®) and A(t6) < A(B) for O0<t<l. So
— 2 -

‘Yi 'm1+1+lY| u+l m

Y
1

3, v(TH®) (@) h  Ah,0) < CA®) gy (h,n-0) .
This implies

J m,+m,-1 J u+1 m1 m2
T MM py () < € 2 A MO g B,n-8) 1" (h,0)
nel K n,6 €T

J my J+Hu+l m,
sof B A ag Go)( T A@ 5l 6.0)
ner 8¢

m m
which is bounded by Lemma 3.2 since qé€S 1 and T €S 2. So by Lemma 3.2,

m1+m2-1
P, € S . This proves Theorem 3.2.
! M2
Theorem 3.3 If q(h,x,7) € 8 ~, r(h,x,0) € S °, and the symbols q(h,x,2)
ml-l-mz—l

and r(h,x%x,Z) commute, then QR-RQ€ PS

ml-l-mz—l
Proof O, -0 = (0., - qr) - (ORQ - rq) € S by Theorem 3.2.

QR RQ QR
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2 ; .
The adjoint of a linear operator A on £ (&)™ is the linear operator

*
A for which

% .
(Au,v)G = (u,A v)G

for all u, v € QZ(G)n. The adjoint of a pseudo-difference operator P is
again a pseudo-difference operator whose symbol is, to highest order, the
conjugate transpose p* of the symbol p of the original operator. Note that
the * on a symbol denotes a matrix adjoint; on an operator it denotes an

operator adjoint.

*
Theorem 3.4 If p(h,x,0) € Sm, then P is a pseudo-difference operator

with symbol q(h,x,Z) € s given by

(3.7 ah,n,0) = Hlh,-n,z+hm) " .
Moreover, if r(h,x,7) = p(h,x,c)*, then r(h,x,C) € s™ and
q(h,x,2) - r(h,x,5) € ™ L.
Proof (w, P*v), = gzrfﬁ(a)* V()
€

) am” D B(h,E-n,hn) " 7 (E) -
ner E'erl

> * A
So Py = > p(h,&-n,hn)" v(E)
Eerl
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= 5 4(h,n~§,hE) (&)
Eel

where ¢(h,n,c) 1is given by (3.7).

et p = su |—m+|5f|. Then by Lemma 3.1, using the notaticn
|8 < k :
of (3.5),
o BA * IBl "m+|8|'
qg(h,n) = Sup sup 9, p(h,-n,z+hn) h A(h,T)
Bl<k ¢ ©
u/2 U m
< 2 A(=m) pg (hymm)
J J+
so ¥ am” e < 22 % am™™ ofm,n
nerT ne T

which is bounded by Lemma 3.2 since p € s™. Hence q € s™.

m

Clearly r € S and
A A A * ~ *
Q(h,n,C) - r(h,n,C) = P(h,—ﬂ,§+ hﬂ) - P(h,-ﬂ,C) .
R *
Let () = p(h,-n,Z) . As in the proof of Theorem 3.2, we can show that

—m+l+|8|| < m

{48 B u+l
!BC (v(€+hn) - V(C))hl | A(h, %) CAM™ 7 pgyq(hs-n)
where U = s l—m+1+|8{'. So
8] < x
T ! @oftam s ¢ B oA g mn)
nes nerT
1

which is bounded by Lemma 3.2. Hence gq-r € S™ .
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We complete this section with a proof of Garding's Inequality. We need first

an interpolation inequality.

Lemma 3.3 Let s, < s, <s

1 2 3 be real numbers. Given €>0, there is a

constant C€ depending on €, S1s Sy, S3 such that
2 2 2
(3.8) ol < e lul + clull .

Proof For & €T,

La+e® < a@ < arleld

4 2.\%27 %3
Choose M>0 so large that %2(1+M ) < € .

Let Fl {£eT: |g| <M}, F2 ={gel: |g]>m},

(s5~s,)
) 2 Y. Then

and C€

2s2 2 252 2
Xoa® T lE®] o+ X A C e

2
o I
2 Eel"l Eel"z

S,.—-S 2s
271 s @ Y lae)?
€€ Fl

(1)

IA

s,~-S 2s 2
+ (%z(lmz)) 27y @ e
tEerl,

2
A I
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*
If p is an nxn matrix, define Rep = (p +p )/2.

If pz * z 2 Clzlz for all z ¢ cn (where wez ==2:isz) we write

p>CI or just pzC. If P 1is a linear operator on QZ(G)n, define

Re P = (P +P)/2.

Theorem 3.5 (Ggrding's Inequality) If p(h,x,Z) € SO is an nxn matrix
symbol and Re p(h,x,7) 2 C0 > 0, then for any €>0 and s<0 there is a

constant C such that
S,E

(3.9) RePu,w 2 Cyoflull - e o lulf .

Proof We first show that if r(h,x,7) € s® is a hermitian matrix symbol

and r(h,x,Z) =2 C, > 0, then the matrix square root b(h,x,Z) of r(h,x,g)

1
(the unique hermitian matrix with positive eigenvalues for which b2 = r) is
also in S0 and
* -1
(3.10) ReR - BB € PS .

Since r 1is hermitian and in SO, there is a positive constant C2 such
that all the eigenvalues of r(h,x,z) for any h,x,; are in the real interval
[Cl’ CZ]' Let Yy be a smooth curve in the right half plane in ¢ surrounding

[Cl’CZ]' Then

2mi

(3.11) b(h,x,0) = == f/Z (21 - r(h,x,0) 7t 4z
Y

where vz 1is the branch of the square root which is positive on the positive
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real axis; see Chapter 10 of Rudin [1973] for details. For any z € Y
and any h, x, T, I(ZI—r(h,X,C))—ll is bounded by the reciprocal of the
distance from Y to [Crcz]‘ If A(t) 1is a matrix function of a real
variable t, then

-1 -1dA -1

(3.12) %t AT =-AT T A and 6a”1 = —A(t+h)_l + SA - A(t)"l.

Differentiating and differencing under the integral sign in equation (3.11),

it is easy to show by induction on Ia] + ]BI that b(h,x,Z) satisfies

Definition 3.1 with m = 0. Theorem 3.4 implies GReR - r € S_1 and
-1 -1 : p
b - OB* €S, so r - Op* b= (b _OB*) b€ S . Theorem 3.3 implies
c..,b-0 € S_l so O -0 € S'_1 proving (3.10)
B* B*B i ReR B*B ’ )
Next we prove the theorem for the case s = -1. Let r. = %(p+p*) -
0 : . % 0
- > i =
(C0 €)I. Then r. > €, r_€ S”, and r. 1is hermitian, so be r €S
-1 -1
and OReRe OB*Be € S 7. By theorem 3.4, OReP ~ OReRe - (CO-E)I €S 7,
so
q. = (C.-e)I +o0 -0 e s,
£ 0 B*B ReP
€ €
By Theorem 3.1,
by
(QEU’U)G = (A“QEU,A u)G
1 1
< 2 . P
- ” A Qeu”o ” ‘ 211”0
<

2
. o2,
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50 (Cy-e) Ilu ]Ig = ((Re P)u,u), - (B:Be, u,u), + (Quu,u),
= Re(Pu,u)G - ” %;1”5 + (qu’u)G R
(3.13) €-e) Jul? < ReBu,w). + c_ JJulP
0 o < Re(Pu,u), e HullZy

which proves (3.9) for s = -1/2.

Using (3.13) with € replaced by €/2 and Lemma 3.3 with € replaced
€

by 2C€/2 (where C&:/2 comes from (3.13)%

(C --%) ”u]F < Re(Pu,u) + C (——E———Ilulﬁ + C'! ”ulF
0 o - e e/2\ 2¢ 0 s)
e/2
€ - Jul? < Re@u,u). + c__ Jul?
0 0o ~ e S,E s

which proves (3.9).

4. Regularity Estimates on a Torus and Proof of Theorem 2.1

In this section we prove the interior regularity estimate Theorem 2.1
and analogous results for regular elliptic pseudo-difference operators
defined on the torus Td, which we now define.

01+Tj

Definition 4.1 Let O,T ez”. Suppose Eij(h,X,C) €5 for

i,j = 1,**+,n and £(h,x,5) 1is the matrix symbol whose elements are

lij(h,x,c). We say that h,x,7) 1is regular elliptic of order (o0,T)

if there are positive constants C, EO, hO such that
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4.1) l[det A(h,x,2)| > CA(h,0)%P

n
for h&o < |C!w < 7 and hShO where 2p = i=z:1 (Gi+ri).

If o; = 0 and T, =m for all i, we say that £(h,x,7) 1s regular

elliptic of homogeneous order m. We say that a pseudo-difference operator
L is regular elliptic of order (0,T) or of homogeneous order m if its
symbol is. This definition is obviously the pseudo~difference analogue of

definitions (2.1) and (2.2).

Lemma 4.1 If p(h,x,Z) € ™ is regular elliptic of homogeneous order

m> 0, then for hEO < [clm £T and h £ hO’ the matrix p(h,x,Z) is

invertible and there is a constant C such that
-1 -
(4.2) lp(h,x,2) 77| < ¢ AT .

Proof Each element of p(h,x,t:)_1 is (det p(h,x,c))-l times a sum of

terms, each of which is a product of n-1 elements of p(h,x,Z). So
~1 -nm m) -1 -m
o0 7Y < CAM,D) ™™ (Ah,2) = cAm™.

We now construct a parametrix ¢q for the symbol p, that is, an

inverse for p modulo s symbols.

Lemma 4.2 If p(h,x,Z) € g™ is regular elliptic of homogeneous order

m 2 0, then there exists a symbol q(h,x,Z) € s™™ such that

(403) w(h,C) = I = q(h9xa(:) P(h,X:C)
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is independent of x and Y(h,Z) € S .
Proof Clearly we may assume h0 < -Eg— in Definition 4.1. <Choose
0

o(t) € CmGR) such that 0 < ¢(t) <1, oé(t) =1 for Itl < EO, and

o(t) = 0 for lt| > 2&0. Define
(Cl) (Cd)
Yh,g) = H) eeolg) for ho<hy,, gl <

and extend P(h,z) to be 2m-periodic in each Cj' It is easy to show

m
that Y(h,Z) € leK for all m €R and all J,K. Let X(h,©) = 1 - %(h,0),
]

and define

a(h,x,2) = x(h,2) pCh,x,2) L .

By periodicity, we may assume [C]w < 7. Since YX(h,Z) =0 for

,CIm < hEO and det p(h,x,z) # 0 for hEO < IC,m s 7w, q(h,x,0) is

well defined, and equation (4.3) holds.
Using Lemma 4.1 and equationms (3.12), it is not difficult to show that

q(h,x,Z) € S™™. An induction on la[ + IBI is needed to verify that

q(h,x,z) satisfies Definition 3.1.

Theorem 4.1 Suppose p(h,x,) € s® s regular elliptic of homogeneous
order m >0 and let s and t be any real numbers. Then there is a

constant C independent of h such that if Pu = f, then

(4.4 loll < cllely + lul)-
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Proof We may assume h £ hO since the estimate (4.4) is clearly true

for hO <h < hmax' Let q(h,x,z) and x(h,Z) be as in Lemma 4.2. By

Theorem 3.2, the symbol of the operator QP can be written as

OQP(h,x,C) = q(h,%,0) p(h,x,0) + r,(h,x,0)
-1 .
where rl(h,x,c) € S . Since gp=x=1-19,
OQP(h,x,E) = I + r(h,x,7)
where r = ry - Yy 1is also in S_l. If Pu = f, then QPu = Qf, so
u = Qf - Ru. We may assume that s+m~t 1is a positive integer; lowering

the value of t if necessary only makes equation (4.4) stronger. If

t £j £ stm-1, then

I A

lollyy € Nt llyy + Hrall,,

IA

lot llpm + Ul
< oliely + Nell).

This last inequality is a result of Theorem 3.1. Applying this inequality

for j=¢t, t+1, ***, s+ m- 1, we obtain

lull,, < c(iel, + ful,)
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We now apply Theorem 4.1 to obtain an estimate similar to equation

(4.4) for regular elliptic symbols of order (0,T).

Lemma 4.3 If p(h,x,Z) € s is regular elliptic of homogeneous order m

m

and r(h,x,z) € S 1 with my < m, then p(h,x,) + 1r(h,x,Z) is regular

elliptic of homogeneous order m.

Proof Expanding out the products in det(p(h,x,c) + r(h,x,C)), we get
det p(h,x,z) plus a sum of terms, each of which is a product of n factors
of elements of p or r with at least one factor coming from r; each

term in this latter sum is bounded by A(h,z) ™ D2+ M e

nm (n—l)m+m1
|det (p(h,x,2) + r(h,x,0))| 2 CA(h,L) - € Ah,0)
for hgo < icim £ W. Since A(h,Z) 2 ﬁ%- {g{m for Ig[m £ T and
nm (n-1)mrim
nm > (n-1)m + m, CAh,Z) dominates ClA(h,C) if we increase

£ sufficiently. The lemma follows.

0

Definition 4.2 If o€ Z", define the matrix symbol

g ( oy o
A (h,z) = diag \A®,Z) ~, **+ A(h,T) s

o o
the diagonal matrix with diagonal entries A(h,Z) 1 ,***, A(h,ZT) n

Let A0 denote the operator with symbol Ao(h,C). If s € R, define
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loly = Ha%I2 = Z lie B -

Theorem 4.2 If 2(h,x,7) 1is regular elliptic of order (0,T) and s and
t are real numbers, then there is a constant C independent of h such

that if Lu = f, then

(4.5) lell e < cllell_,+Nall,)
Proof Let p(h,x,2) = A °(h,z) &(h,x,2) A "(h,Z). Then
97 0

So p(h,x,g) 1is regular elliptic of homogeneous order 0. Note that

=0.-T., -0, ~T.

Pij Lij A . Define P A Then Pij A Lij A

By Theorem 3.3, the symbol of

-1
is in S . By Lemma 4.3, P is regular elliptic of homogeneous order O.

Suppose Lu = f. Then

so by Theorem 4.1,

I A%l < c(wrcfus £ ATuutl)
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with ty arbitrarily small. Hence

lolppe = o(lely o o o) -

We remark that equation (4.2) is the only property of regular elliptic
symbols of homogeneous order m (beyond the fact that they are symbols)
which is used in the proof of Theorem 4.1. We could have used other criteria

in Definition 4.1 for these symbols which lead to (4.2), for example,

lp(h,x,0)z* 2| < CA(h,2)"|z]? for all ze("

for hgoglclwin and h < h.

We now present the proof of Theorem 2.1.

Proof of Theorem 2.1 Suppose the regular elliptic system of difference

equations (2.10) is defined in Q. Let M be the union of all the sets
M which occur when we write the difference operators Lij in the form
of equation (2.6). If O 4is an open subset of Q and 0h M is defined

as in equation (2.16), then for a given h and x € Oh M’ Lu(x) depends
’

only on the values of u in O.
Let Ql be a subdomain with compact closure ﬁi < . Without loss
of generality, we may assume that there is an open cube Q such that

§1C Q Cac Q; any Ql is the union of a finite number of subdomains of
Q@ which do have this property, and the estimate (2.17) for Ql can be

obtained from the estimates (2.17) for these subdomains.
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For any fixed hl > 0, estimate (2.17) is clearly true if we restrict

h to the interval ([h., h ]. We will choose h, to satisfy a finite
1 max 1

number of conditions. Then we only have to prove (2.17) for 0 < h £ hl'

We may assume Q is (O,ZTT)d. Although Q 1is a subset of {C ]Rd,

we may also identify Q with the open subset (0,27r)d of Td so that we

may use the theory of pseudo-difference operators which we have developed.

We may also assume that for h < h,, the grids G(h,R2)MN Q considered

1’

are all grids on the torus of the kind dealt with in section 3, i.e.,

h = 2n/(2N+1). Although the theorem is stated for a continuum of values
of h, we will consider only a discrete set of values of h tending to
zero; clearly the details necessary to extend our arguments to all h in

0 <h < h1 can be worked out.

oo

Let r == max Tj +k+1. For r = 1,2,°°',rm, let ¢r be C

functions defined on Q with compact support Kr such that: 0$_¢r5 1;
¢1 = 1 on a neighborhood of .ﬁl; for 1 <r<r -1,

neighborhood of Kr; and Kr < Q. Let 0 be the interior of the set
m

Orm+l _ 0r+1

where ¢r = 1, and set Z Q. Then KrC: for 1 <r<r.

m

Choose hl>0 so small that for 0 < h £ hl, the following holds:

for each x€ ]Rd for which R(h,x,k—l»'r)r\§l # @, R(h,x,k+1) € Ol;

r+1
KrC Oh,M for 1< rg r; for each x€ ]Rd for which R(h,x,k—cf)f\Kr 4 0,
m
R(h,x,k-0) € Q; and Q € Qh m+ For the rest of the proof assume h < h,.
]

Then
4.6) T N T N R LU

KT, KT
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For 1 <r<r,

(4.7) ” (brf ” k-G < C”¢rf”h,k—O',Td < C”f ”h,k—G,Q .

Let Y: ZR@ >+ Q be a Coo function, 2m-periodic in each Xj, which

~

is the identity on a neighborhood of Kr . Define L on Td to be the
m

operator with symbol

2(h,x,2) = 2(h,¥(x),0).

d

Clearly L is a regular elliptic difference operator on T of order

(06,T), and for 1 <r £ r -1,

(4.8) o, Lu = ¢ LG w0 = ¢ L 0

IA

Let s be an integer, 1 - max Tj s £k, and let r = kt+l - s.

Then 1 <r < r. ~-1. Applying Theorem 4.2 to L and ¢ru,

(4.9 loul,. < cdliowl o, + I eouly.

Now

Lo = L(o9,,,0

(Lo, -0 L) u) + 0L, v

L o -0 L)@ ) + 6 Lu
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where @r is the operator with symbol ¢r(x) €,SO. By ?heorem 3.3,
. - o, +T1.-1
Lé -0 L),.epPs > 1 | so
T r ij
(4.10) ILowll,_o s clioyqull o gy + loEllg_s -

Combining (4.9), (4.10), (4.7), and s < k,

loullyyy < C(”¢r+1””s=1+1 vl ”d)ru”O)

In

(4.11) leptlare 5 (lopsgelly e + NElhy o q * et 0,0) -

Applying (4.11) successively, starting with s=k, r=1, ending with

s = l-max Tj’ r = rm—l, and noting that

m

Iy ol e yae € el € Sl o g
J

we obtain

(4.12) loyulhye < il oq * Nulh o)

The theorem follows from equations (4.6) and (4.12).
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5. Discussion and Examples

This section is written to be a guide to the main results of this paper
and to illustrate some of the important concepts. We begin with a discussion
of the two difference schemes which were presented in Section 1. We then
present some regular and non-regular difference schemes for the Stokes equa-
tions. These illustrate the interior regularity results of Section 4. We
close this section with a short discussion of the factors to be considered
in choosing a difference scheme.

Consider again the examples of difference schemes given in Section 1
for the Cauchy-Riemann equations (1.1) on the unit square. For the boundary

data take

2
-y u(l,y) 1~y

u(0,y)

(5.1)
v(x,0)

[
(=

v(x,1) 2x.

The solution to the partial differential equations with this boundary data is

u(X,}’)

L
]
|
<

v(x,y) = 2xy.

The centered difference scheme (1.2) is not regular since its symbol is

i sin 6/h -1 sin ¢/h

i sin ¢/h i sin 6/h
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and the determinant of the symbol is

—(sin2 g + sin2 ¢)h‘2.

Since this determinant vanishes for ¢ = (8,¢) = (m,7T) the scheme
cannot satisfy an estimate of the form (2.11) and thus it is non-regular.
This scheme requires boundary conditions in addition to (5.1) to determine

the solution. For these we use one-sided differences at the boundary, i.e.

ul,J i uO:L (VO,J"*'l _ Vosj"'l) 0 j = 1.5+ N-1
h 2h
. —u . (v, . -V o
UN,i T UN-1,j N,j+l = VN,j-1 0 j=1,+,N1
h 2h
(5.2)
Ui+1,0 ui-l,o VJ]_ - Vi,o = 0 i=1 eeseN-1
2h h
e TS o VS I X Bl 0.5 SR { = 1,081
2h h

Here h =1/N and N 1is an even integer.
The solution to the difference equations (1.2) with boundary data (5.1)

and (5.2) is

.2 2 2,2 2 2
. T -3 + = -
ulj i'h ih € x| yj +€l
(5.3) 2
v = 2ijh = 2x.y

i3 i’j ’
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where ei =0 for i even and Ei = —h2 for 1 odd. This solution is

second order accurate as one would expect from the formal second-order
accuracy of the scheme, but note that the solution is not as smooth as one
would expect based on the regularity properties of the differential equatioms.
In particular (Gi)3uij = O(h—l) and thus no estimate of the form (2.17)
in Theorem 2.1 can hold for this scheme.

The staggered scheme (1.3) is easily seen to be a regular scheme and
thus satisfies interior regularity estimates by Theorem 2.1. 1In fact, the
solution of scheme (1.3) with boundary data (5.1) agrees with the solution
of the differential equations at the grid points.

The divided difference with respect to x of u

ij

is only a first-order accurate approximation to the derivative of u, i.e.

from equation (5.3)

6fu 2 x

- u

i+1/2 Xi41/2

This loss of accuracy is a comsequence of the non-regularity of the
scheme and shows that an estimate such as (2.20) of Theorem 2.2 can not
hold for this scheme.

As a further illustration of the theory, we examine two difference
approximations to the Stokes equations on a uniform grid. The Stokes equa-
tions for two-dimensions are given by equations (2.5). We will consider
only homogeneous data, i.e. fiEO. For the first difference approximation
consider using the usual five-point stencil for the Laplacian and central

differences for the first derivatives. This can be written as
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((3:{_ 6’_{ + GZ 62) Ui + 6)0( B3 = 0
(5.4) (ai §* + 6_};_ GZ) vy * dg pyy= O
Gg uij + Gg vij = 0

where Gg is the central difference operator in x, 63 = (6: + 6?)/2,

and similarly for 6%.

The symbol for this system of difference equations is

- Aé 0 (i sin 0)/h
2
0 A (i sin $)/h
(i sin 6)/h (i sin ¢)/h 0
2 2 A -
where AO = é(sin (30) + Sinz(%ﬂbY)h 2, and its determinant is

~4(sin®(30) + sin®(3¢))(sin20 + sinZ¢)n .

Note that the determinant vanishes at ¢ = (6,¢) = (0,m), (m,0),
and (m,m) din addition to Z = (0,0). This implies that inequality (2.11)
can not hold and thus this approximation is a non-regular system of difference
equations.

To remedy the non-regularity, we replace the central differences by

one-sided differences, such as,
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X X Yy ¥y X _

(@ 6% + o (5_)uij + 8%, =0
X X Yy <y y =

(5.5) (6% 6% + o7 o Jvyy * gy =0
X y _

6+ uij + 6+ v 3 0.

—Ag 0 (1 - e ¥y
0 —Ag (1 - e ¥
@® - 1)/m e “1y/m 0

with determinant

-AY - 16(sin2(ée) + sinz(%e))zh—4

Clearly the estimate (2.11) is satisfied.
It follows from Theorem 2.1 that since the scheme (5.5) is regular, it
satisfies interior regularity estimates analogous to the regularity estimates

for the Stokes equations. In particular,
"u”h,k+1,$'21 + v "1-.,1<+1,s21 + ”p”h,k,ﬂl

< ety ®(luly o0 + Ivhogo + 1ol o)
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for k > 0 and domains Ql and § satisfying the hypotheses of Theorem 2.1.
The system (5.4) does not satisfy such an estimate.

The system (5.5) is formally second-order accurate if one uses a

staggered mesh and makes the following assignments,

uij = U(Xi,yj)

Vi3 = V(Xi + %h, yj+ zh)
= + 1

pij p(xi 2h9 Yj)

By assigning wu,,, v,., and pij to the location (xi, yj) the scheme

(5.4) is formally second-order accurate and the scheme (5.5) is formally
first-order accurate.

We offer these comments on the use of regular and non-regular schemes.
For a difference scheme to be regular and to have more than first order
accuracy it frequently happens that the mesh must be a staggered mesh. At
least this is true for the examples of systems considered in this paper.
For simple linear elliptic systems such as the Cauchy-Riemann equatiomns (1.2)
and the Stokes equations (2.5), staggered regular schemes present no
serious difficulties to implement. However, for more complicated systems,
staggered grids can cause problems. Boundary conditions with staggered
grids present difficulties when they involve variables which are not defined
on the boundary coordinate line. Also the addition of lower order terms to
the systems (1.1) or (2.5) would necessitate the averaging of variables in

the regular difference approximation (1.3) and (5.5) if the formal second-order
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accuracy 1is to be maintained.

For more complicated equations involving lower order non-linear terms,
as in the incompressible Navier-Stokes equations, or for situations in which
the elliptic system is only part of a larger system of equations, the advantage
of regularity may not be worth the additional complexity entailed by the
staggered grid. In such situations a non-regular difference scheme may pre-
sent the great advantage of being simpler to implement.

As an example of a non-linear system similar to the Cauchy-Riemann
equations which is solved using a staggered grid, we refer to Dendy and
Wendroff [1979].

For a non-regular scheme, the inability of the determinant to satisfy
inequality (2.11) indicates that the high frequency components of the solu-
tion do not depend continuously on the data of the continuous problem. The
elimination of these spurious, high frequency components requires a careful
treatment at the boundaries.

Moreover, as shown in the first example discussed in this section, non-
regularity of a scheme can cause the divided differences of the solution to
approximate derivatives with less accuracy than that of the overall scheme.
For regular schemes this is not so, as shown by Theorem 2.2. This provides
a partial answer to the questions posed by Roache {1974, page 342] on the
relative accuracy of the staggered meshes as opposed to non-staggered meshes.

As a general rule then, regular difference schemes give smoother (i.e.
regular) solutions at the price of greater complexity of implementation
when staggered grids are required. Non-regular schemes can be simpler than
regular schemes but require greater care to maintain the necessary accuracy

and smoothness of the solution.
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